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Overview of Presentation

• Programmatic overview
• CARBO instrument concept
• Instrument architecture
• Key technologies
• Immersion gratings
• Polarization sensing
• Large format CHROMA-D/GeoSnap focal plane arrays

• Instrument radiometric performance estimate
• Summary and conclusion
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Programmatic Overview

• Funded by Instrument Incubator Program (IIP)
• NASA’s Earth Science Technology Office (ESTO)

• Institutions: 
• Jet Propulsion Laboratory
• University of Texas at Austin
• Caltech

• Goal: 
• Develop a new, more capable suite of instruments to measure the green 

house gasses for better understanding of carbon climate. 
• Advance new technology immersion gratings and modular instrument 

architecture.
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CARBO Instrument Concept
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• Wide-swath imaging spectrometer 
• FOV: 12 degree
• Ground swath: 148 km 

• Spatial resolution element 2 km x 2 km
• Contiguous spatial sampling
• Weekly revisit rate
• Low Earth orbit (LEO) 
• Adds CH4 and CO to the CO2 and Solar Induced Fluorescence 

(SIF) measurements pioneered by the Orbiting Carbon 
Observatory (OCO-2/3)
• increases ability to disentangle carbon fluxes into their 

constituent components
• Modular architecture
• New technology

• Immersion grating
• CHROMA-D/GeoSnap focal plane array: a large-format, low-

noise detector optimized for imaging spectroscopy 
• Polarization sensing
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CARBO Science Requirements
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• Nominal bright case – SNR @ SZA = 35 deg and albedo = 30%
• The SNR case for SZA = 65 deg and 5% albedo is the driving/limiting dark case

Required Precision
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CARBO Instrument Science Bands
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Conceptual Opto-Mechanical Layout
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Instrument 1
(745 – 772 nm, for Oxygen-A band and SIF Remote Sensing)

§ Telescope aperture diameter: 25 mm
§ Telescope focal length: 52.8 mm 
§ Telescope F/# : 2.11
§ Ground Sample Distance: 400 m 
§ Slit width: 60 um
§ Wavelength range : 27 nm 
§ Spectral Resolution: 0.05 nm
§ R = 15,400
§ Spectral dispersion: 1080 pixels

Dimension are for a design with CHROMA-A (30 µ pixel). The design 
for CHROMA-D/GeoSnap scales down in size for 18 µ pixels.
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Conceptual Optical Layout
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Instrument 1
(745 – 772 nm, for Oxygen-A band and SIF Remote Sensing)
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25 mm Aperture

§ Telescope aperture diameter: 25 mm
§ Telescope focal length: 52.8 mm 
§ Telescope F/# : 2.11
§ Ground Sample Distance: 400 m 
§ Slit width: 60 um
§ Wavelength range : 27 nm 
§ Spectral Resolution: 0.05 nm
§ R = 15,400
§ Spectral dispersion: 1080 pixels
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Conceptual Opto-Mechanical Layout
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Instrument 2
(1595 – 1659 nm, for CO2 and CH4 Remote Sensing)

§ Telescope aperture diameter: 35 mm
§ Telescope focal length: 75.18 mm 
§ Telescope F/# : 2.11
§ Ground Sample Distance: 168 m  
§ Slit width: 60 um
§ Wavelength range: 61 nm 
§ Spectral Resolution: 0.15 nm
§ R = 11,060
§ Spectral dispersion: 814 pixels

Dimension are for a design with CHROMA-A (30 µ pixel). The design 
for CHROMA-D/GeoSnap scales down in size for 18 µ pixels.
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Conceptual Optical layout
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Instrument 2
(1595 – 1659 nm, for CO2 and CH4 Remote Sensing)
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35 mm aperture

§ Telescope aperture diameter: 35 mm
§ Telescope focal length: 75.18 mm 
§ Telescope F/# : 2.11
§ Ground Sample Distance: 168 m  
§ Slit width: 60 um
§ Wavelength range: 61 nm 
§ Spectral Resolution: 0.15 nm
§ R = 11,060
§ Spectral dispersion: 814 pixels
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Key Technologies: Immersion Grating

• Immersion grating reduces the size and mass of echelle gratings without 
sacrificing performance
• Diffraction occurs internal to the material 
• Grating size scales as index of refraction, n 

• sin(a) + sin(b) = m !
"#

where m is diffraction order, d is pitch, n is index 
of refraction and a and b are incident and diffracted angles

• In silicon, grating facets are made via anisotropic etching resulting in 
atomic level features
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Immersion Grating Correction of Anamorphic Compression
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• A planar grating causes anamorphic beam compression
• An immersed grating can be designed so that the anamorphism is largely compensated by the prism
• Anamorphic correction allows for more symmetric PSF over wavelength, which enables more uniform sampling over 

the detector

Immersion Grating Benefit: Reduction in Anamorphic Compression
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Immersion Grating and Spectral Resolving Power
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Grating length: 161 mm

Planar grating: 
Spectral 
resolving power 
varies by 1.8

Immersion grating: 
Spectral resolving 
power varies by 
1.08

Immersion Grating Benefit: Improvement in Resolving Power Uniformity Across Wavelength
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Grating Efficiency Polarization Sensitivity
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Polarization sensitive, even in 4th orderHighly polarization sensitive in 1st order

The two orthogonal polarization states have non-matching grating efficiencies
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Key Technology: Polarization Sensing Optical Design
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Large Format FPA, GeoSnap
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Reference herein to any specific commercial
product, process, or service by trade name,
trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by
the United States Government or the Jet
Propulsion Laboratory, California Institute of
Technology.
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Key Technologies: Large Format FPA 

Typical Performance for TIS 2.5um-cutoff HgCdTe detectors

Predicted full well and readout noise performance for 
the 2 different version of the CHROMA-D ROIC

• Latest infrared focal plane technologies from Teledyne Imaging Sensors (TIS)
• 18um pixel pitch HgCdTe detector hybridized to digital ROIC 
• Variable array sizes of 2k x 500 (Chroma-D) and 2k x 2k (GeoSnap)
• On-chip digitization; without the need for complex analog-to-digital electronics supporting the 

FPA, the GeoSnap/CHROMA-D allows a simpler overall design for the CARBO instrument.
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FPA Noise Assumptions for Performance Estimate
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The noise values used for CHROMA-A are for an engineering-grade FPA, and the noise values for 
CHROMA-D are based on theoretical projected values. Additionally, the electronics noise for the 
CHROMA-A FPAs is based on the JPL-designed CHROMA-A electronics. *Dark Current values estimated 
at the CARBO operating temperature using “Rule07” with a 100x derating factor
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Radiometric Performance Estimate

• The engineering design work is guided by Radiometric performance 
estimate (analysis of SNR), which is a function of:
• Radiometry over the band
• Observational Scenarios (albedo and SZA)
• Instrument parameters
• Throughput of the system
• FPA noise performance
• Integration time
• Fabrication constraints
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Radiometric Performance Estimate
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Instrument 1 SNR estimates are based on: spectral radiance at
top of the atmosphere 402 W/m2/sr/um, albedo 5%, solar
zenith angle 50o, FOV 12o per S and P polarization, ground
swath 148 km, F/2.11, aperture 25 mm, slit width 60 um, total
optical transmission 0.71, integration time 0.148 s.

Instrument 2 SNR estimates are based on: spectral radiance at
top of the atmosphere 60.2 W/m2/sr/um, albedo 5%, solar
zenith angle 50o, FOV 12o per S and P polarization, ground
swath 148 km, F/2.11, aperture 35 mm, slit width 60 um, total
optical transmission 0.71, integration time 0.148 s.
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Summary and Conclusion

• CARBO is a tech demo instrument, funded by NASA’s Instrument Incubator Program 
• CARBO consists of a wide-FOV suite of instruments to measure CO2, CH4, CO and enhanced 

SIF within a 2x2 km2 area at a high spectral resolution (0.5 – 0.15 nm) with a weekly revisit 
rate
• CARBO suite of instruments advance the following key technologies: 
• Immersion gratings
• Large format GeoSnap FPAs
• Simultaneous polarization sensing 
• Modular architecture, same form factor, on a common platform

• JPL designs, builds and tests instruments 1 and 2 with GeoSnap, and designs instruments 3 
and 4
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